Mathjax语法符号归纳

😁

目录

  • 行间公式
  • 各种数学符号和特性
  • 算符名称
  • \text 命令
  • 积分与求和
  • 插入表格
  • 交换图
  • 使用数学字体
  • 参考文献

行间公式

  • 简介
  • 单个公式
  • 不带对齐的换行公式
  • 对齐的换行公式
  • 不带对齐的公式组
  • 带有多列对齐的公式组
  • 对齐构建区块
  • 调整标签的位置
  • 垂直间距与多行公式的换行
  • 中断行间公式
  • 公式编号
  • 编号秩序
  • 编号公式的交叉引用
  • 附属编号序列
  • 编号风格

    各种数学符号和特性

函数、符号及特殊字符

声调/变音符号
\dot{a}, \ddot{a}, \acute{a}, \grave{a} ${\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}}$
\check{a}, \breve{a}, \tilde{a}, \bar{a} ${\displaystyle {\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}}$
\hat{a}, \widehat{a}, \vec{a} ${\displaystyle {\hat {a}},{\widehat {a}},{\vec {a}}}$
标准函数
\exp_a b = a^b, \exp b = e^b, 10^m ${\displaystyle \exp _{a}b=a^{b},\exp b=e^{b},10^{m}}$
\ln c, \lg d = \log e, \log_{10} f ${\displaystyle \ln c,\lg d=\log e,\log _{10}f}$
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f ${\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f}$
\arcsin a, \arccos b, \arctan c ${\displaystyle \arcsin a,\arccos b,\arctan c}$
\arccot d, \arcsec e, \arccsc f ${\displaystyle \operatorname {arccot} d,\operatorname {arcsec} e,\operatorname {arccsc} f}$
\sinh a, \cosh b, \tanh c, \coth d ${\displaystyle \sinh a,\cosh b,\tanh c,\coth d}$
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n ${\displaystyle \operatorname {sh} k,\operatorname {ch} l,\operatorname {th} m,\operatorname {coth} n}$
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q ${\displaystyle \operatorname {argsh} o,\operatorname {argch} p,\operatorname {argth} q}$
\sgn r, \left\vert s \right\vert ${\displaystyle \operatorname {sgn} r,\left\vert s\right\vert }$
\min(x,y), \max(x,y) ${\displaystyle \min(x,y),\max(x,y)}$
界限
\min x, \max y, \inf s, \sup t ${\displaystyle \min x,\max y,\inf s,\sup t}$
\lim u, \liminf v, \limsup w ${\displaystyle \lim u,\liminf v,\limsup w}$
\dim p, \deg q, \det m, \ker\phi ${\displaystyle \dim p,\deg q,\det m,\ker \phi }$
投射
\Pr j, \hom l, \lVert z \rVert, \arg z ${\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z}$
微分及导数
dt, \mathrm{d}t, \partial t, \nabla\psi ${\displaystyle dt,\mathrm {d} t,\partial t,\nabla \psi }$
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y ${\displaystyle dy/dx,\mathrm {d} y/\mathrm {d} x,{\frac {dy}{dx}},{\frac {\mathrm {d} y}{\mathrm {d} x}},{\frac {\partial ^{2}}{\partial x{1}\partial x{2}}}y}$
\prime, \backprime, f^\prime, f’, f’’, f^{(3)}, \dot y, \ddot y ${\displaystyle \prime ,\backprime ,f^{\prime },f’,f’’,f^{(3)}!,{\dot {y}},{\ddot {y}}}$
类字母符号及常数
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar ${\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar }$
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA ${\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS ,\S ,\P ,\unicode{x212B} }$
模算数
s_k \equiv 0 \pmod{m} ${\displaystyle s_{k}\equiv 0{\pmod {m}}}$
a \bmod b ${\displaystyle a{\bmod {b}}}$
\gcd(m, n), \operatorname{lcm}(m, n) ${\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}$
\mid, \nmid, \shortmid, \nshortmid ${\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid }$
根号
\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}} $\displaystyle \surd ,\sqrt {2},{\sqrt[{n}]{}},{\sqrt[{3}]{\frac {x^{3}+y^{3}}{2}}}$
运算符
+, -, \pm, \mp, \dotplus ${\displaystyle +,-,\pm ,\mp ,\dotplus }$
\times, \div, \divideontimes, /, \backslash ${\displaystyle \times ,\div ,\divideontimes ,/,\backslash }$
\cdot, * \ast, \star, \circ, \bullet ${\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet }$
\boxplus, \boxminus, \boxtimes, \boxdot ${\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot }$
\oplus, \ominus, \otimes, \oslash, \odot ${\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot }$
\circleddash, \circledcirc, \circledast ${\displaystyle \circleddash ,\circledcirc ,\circledast }$
\bigoplus, \bigotimes, \bigodot ${\displaystyle \bigoplus ,\bigotimes ,\bigodot }$
集合
{ }, \O \empty \emptyset, \varnothing ${\displaystyle {},\emptyset \emptyset \emptyset ,\varnothing }$
\in, \notin \not\in, \ni, \not\ni ${\displaystyle \in ,\notin \not \in ,\ni ,\not \ni }$
\cap, \Cap, \sqcap, \bigcap ${\displaystyle \cap ,\Cap ,\sqcap ,\bigcap }$
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus ${\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus }$
\setminus, \smallsetminus, \times ${\displaystyle \setminus ,\smallsetminus ,\times }$
\subset, \Subset, \sqsubset ${\displaystyle \subset ,\Subset ,\sqsubset }$
\supset, \Supset, \sqsupset ${\displaystyle \supset ,\Supset ,\sqsupset }$
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq ${\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq }$
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq ${\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq }$
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq ${\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq }$
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq ${\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq }$
关系符号
=, \ne, \neq, \equiv, \not\equiv ${\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv }$
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := ${\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=}$
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong ${\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong }$
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto ${\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto }$
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot ${\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot }$
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot ${\displaystyle >,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }$
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq ${\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq }$
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq ${\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq }$
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless ${\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless }$
\leqslant, \nleqslant, \eqslantless ${\displaystyle \leqslant ,\nleqslant ,\eqslantless }$
\geqslant, \ngeqslant, \eqslantgtr ${\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr }$
\lesssim, \lnsim, \lessapprox, \lnapprox ${\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox }$
\gtrsim, \gnsim, \gtrapprox, \gnapprox ${\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox }$
\prec, \nprec, \preceq, \npreceq, \precneqq ${\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq }$
\succ, \nsucc, \succeq, \nsucceq, \succneqq ${\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq }$
\preccurlyeq, \curlyeqprec ${\displaystyle \preccurlyeq ,\curlyeqprec }$
\succcurlyeq, \curlyeqsucc ${\displaystyle \succcurlyeq ,\curlyeqsucc }$
\precsim, \precnsim, \precapprox, \precnapprox ${\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox }$
\succsim, \succnsim, \succapprox, \succnapprox ${\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox }$
几何符号
\parallel, \nparallel, \shortparallel, \nshortparallel ${\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel }$
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ ${\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ }}$
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar ${\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar }$
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown ${\displaystyle \bigcirc ,\triangle ,\bigtriangleup ,\bigtriangledown }$
\vartriangle, \triangledown ${\displaystyle \vartriangle ,\triangledown }$
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright ${\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright }$
逻辑符号
\forall, \exists, \nexists ${\displaystyle \forall ,\exists ,\nexists }$
\therefore, \because, \And ${\displaystyle \therefore ,\because ,\And }$
\or \lor \vee, \curlyvee, \bigvee ${\displaystyle \lor ,\lor ,\vee ,\curlyvee ,\bigvee }$
\and \land \wedge, \curlywedge, \bigwedge ${\displaystyle \land ,\land ,\wedge ,\curlywedge ,\bigwedge }$
\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, ${\displaystyle {\bar {q}},{\bar {abc}},{\overline {q}},{\overline {abc}},}$
\lnot \neg, \not\operatorname{R}, \bot, \top ${\displaystyle \lnot \neg ,\not \operatorname {R} ,\bot ,\top }$
\vdash \dashv, \vDash, \Vdash, \models ${\displaystyle \vdash ,\dashv ,\vDash ,\Vdash ,\models }$
\Vvdash \nvdash \nVdash \nvDash \nVDash ${\displaystyle \Vvdash ,\nvdash ,\nVdash ,\nvDash ,\nVDash }$
\ulcorner \urcorner \llcorner \lrcorner ${\displaystyle \ulcorner \urcorner \llcorner \lrcorner }$
箭头
\Rrightarrow, \Lleftarrow ! ${\displaystyle \Rrightarrow ,\Lleftarrow }$
\Rightarrow, \nRightarrow, \Longrightarrow \implies ${\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow ,\implies }$
\Leftarrow, \nLeftarrow, \Longleftarrow ${\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow }$
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff ${\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff }$
\Uparrow, \Downarrow, \Updownarrow ${\displaystyle \Uparrow ,\Downarrow ,\Updownarrow }$
\rightarrow \to, \nrightarrow, \longrightarrow ${\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow }$
\leftarrow \gets, \nleftarrow, \longleftarrow ${\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow }$
\leftrightarrow, \nleftrightarrow, \longleftrightarrow ${\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow }$
\uparrow, \downarrow, \updownarrow ${\displaystyle \uparrow ,\downarrow ,\updownarrow }$
\nearrow, \swarrow, \nwarrow, \searrow ${\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow }$
\mapsto, \longmapsto ${\displaystyle \mapsto ,\longmapsto }$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons ${\displaystyle \rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft ,\upharpoonright ,\downharpoonleft ,\downharpoonright ,\rightleftharpoons ,\leftrightharpoons }$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright ${\displaystyle \curvearrowleft ,\circlearrowleft ,\Lsh ,\upuparrows ,\rightrightarrows ,\rightleftarrows ,\rightarrowtail ,\looparrowright }$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft ${\displaystyle \curvearrowright ,\circlearrowright ,\Rsh ,\downdownarrows ,\leftleftarrows ,\leftrightarrows ,\leftarrowtail ,\looparrowleft }$
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow ${\displaystyle \hookrightarrow ,\hookleftarrow ,\multimap ,\leftrightsquigarrow ,\rightsquigarrow ,\twoheadrightarrow ,\twoheadleftarrow }$
特殊符号
\amalg \P \S \% \dagger \ddagger \ldots \cdots ! ${\displaystyle \amalg \P \S \%\dagger \ddagger \ldots \cdots }$
\smile \frown \wr \triangleleft \triangleright ${\displaystyle \smile \frown \wr \triangleleft \triangleright }$
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp ${\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp }$
未排序
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes ${\displaystyle \diagup ,\diagdown ,\centerdot ,\ltimes ,\rtimes ,\leftthreetimes ,\rightthreetimes }$
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq ${\displaystyle \eqcirc ,\circeq ,\triangleq ,\bumpeq ,\Bumpeq ,\doteqdot ,\risingdotseq ,\fallingdotseq }$
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork ${\displaystyle \intercal ,\barwedge ,\veebar ,\doublebarwedge ,\between ,\pitchfork }$
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright ${\displaystyle \vartriangleleft ,\ntriangleleft ,\vartriangleright ,\ntriangleright }$
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq ${\displaystyle \trianglelefteq ,\ntrianglelefteq ,\trianglerighteq ,\ntrianglerighteq }$

关于这些符号的更多语义,参阅TeX Cookbook的简述

上标、下标及积分

功能 语法 效果
上标 a^2 $\displaystyle a^{2}$
下标 a_2 $\displaystyle a_{2}$
组合 a^{2+2} $\displaystyle a^{2+2}$
a_{i,j} $\displaystyle a_{i,j}$
结合上下标 x_2^3 $\displaystyle x_{2}^{3}$
前置上下标 {}_1^2 \! X_3^4 $\displaystyle {}_1^2 X_3^4$
导数(HTML) x' $\displaystyle x’$
导数(PNG) x^\prime $\displaystyle x^{\prime }$
导数(错误) x\prime $\displaystyle x\prime $
导数点 \dot{x} $\displaystyle \dot {x}$
\ddot{y} $\displaystyle \ddot {y}$
向量 \vec{c} $\displaystyle \vec {c}$
\overleftarrow{a b} $\displaystyle \overleftarrow {ab}$
\overrightarrow{c d} $\displaystyle \overrightarrow {cd}$
\overleftrightarrow{a b} $\displaystyle \overleftrightarrow {ab}$
\widehat{e f g} $\displaystyle \widehat {efg}$
上弧(注: 正确应该用 \overarc,但在这里行不通。要用建议的语法作为解决办法。)(使用\overarc时需要引入{arcs}包。) \overset{\frown} {AB} $\displaystyle \overset {\frown }{AB}$
上划线 \overline{h i j} $\displaystyle \overline {hij}$
下划线 \underline{k l m} $\displaystyle \underline {klm}$
上括号 \overbrace{1+2+\cdots+100} $\displaystyle \overbrace {1+2+\cdots +100}$
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix} $\displaystyle \begin{matrix}5050 \\ \overbrace{1+2+\cdots +100} \end{matrix}$
下括号 \underbrace{a+b+\cdots+z} $\displaystyle \underbrace {a+b+\cdots +z}$
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix} \begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}
求和 \sum_{k=1}^N k^2 $\displaystyle \sum _{k=1}^{N}k^{2}$
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix} $\displaystyle \begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}$
求积 \prod_{i=1}^N x_i $\displaystyle \prod_{i=1}^N x_i$
\begin{matrix} \prod_{i=1}^N x_i \end{matrix} \begin{matrix} \prod_{i=1}^N x_i \end{matrix}
上积 \coprod_{i=1}^N x_i $\displaystyle \coprod_{i=1}^N x_i$
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix} \begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
极限 \lim_{n \to \infty}x_n $\displaystyle \lim_{n \to \infty}x_n$
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix} \begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
积分 \int_{-N}^{N} e^x\, \mathrm{d}x $\displaystyle \int _{-N}^{N}e^{x}\,\mathrm {d} x$
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix} $\displaystyle \begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}$
双重积分 \iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y ${\displaystyle \iint _{D}^{W}\,\mathrm {d} x\,\mathrm {d} y}$
三重积分 \iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z ${\displaystyle \iiint _{E}^{V}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}$
四重积分 \iiiint_{F}^{U} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t ${\displaystyle \iiiint _{F}^{U}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z\,\mathrm {d} t}$
闭合的曲线、曲面积分 \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y ${\displaystyle \oint _{C}x^{3}\,\mathrm {d} x+4y^{2}\,\mathrm {d} y}$
交集 \bigcap_1^{n} p ${\displaystyle \bigcap _{1}^{n}p}$
并集 \bigcup_1^{k} p ${\displaystyle \bigcup _{1}^{k}p}$

分数矩阵和多行列式

功能 语法 效果
分数 \frac{2}{4}=0.5 ${\displaystyle {\frac {2}{4}}=0.5}$
小型分数 \tfrac{2}{4} = 0.5 ${\displaystyle {\tfrac {2}{4}}=0.5}$
大型分数(嵌套) \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a ${\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}$
大型分数(不嵌套) \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a ${\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}$
二项式系数 \dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} $\displaystyle\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$
小型二项式系数 \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} $\displaystyle \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$
大型二项式系数 \binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} $\displaystyle\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$
矩阵 \begin{matrix}
x & y \\
z & v
\end{matrix}
$\displaystyle \begin{matrix}
x & y \\
z & v
\end{matrix}$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
$\displaystyle \begin{vmatrix}
x & y \\
z & v
\end{vmatrix}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
$\displaystyle \begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}$
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
$\displaystyle \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
$\displaystyle \begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
$\displaystyle \begin{pmatrix}
x & y \\
z & v
\end{pmatrix}$
\bigl( \begin{smallmatrix}
a&b\ c&d
\end{smallmatrix} \bigr)
$\displaystyle \bigl( \begin{smallmatrix}
a&b\ c&d
\end{smallmatrix} \bigr)$
条件定义 f(n) =
\begin{cases}
n/2,&{\mbox{if }}n{\mbox{ is
even} \\
3n+1,&{\mbox{if }}n{\mbox{ is
odd}
\end{cases}
$\displaystyle f(n) =
\begin{cases}
n/2, & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}$
多行等式、同余式 \begin{align}
f(x)&=(m+n)^{2}\\
&=m^{2}+2mn+n^{2}\\
\end{align}
$\displaystyle \begin{align}
f(x)&=(m+n)^{2}\\
&=m^{2}+2mn+n^{2}\\
\end{align}$
\begin{align}
3^{6n+3}+4^{6n+3}
&\equiv (3^{3})^{2n+1}+
(4^{3})^{2n+1}\\
&\equiv 27^{2n+1}+64^{2n+1}\\
&\equiv 27^{2n+1}+
(-27)^{2n+1}\\
&\equiv 27^{2n+1}-27^{2n+1}\\
&\equiv 0{\pmod {91}}\\
\end{align}
$\displaystyle \begin{align}
3^{6n+3}+4^{6n+3}
&\equiv (3^{3})^{2n+1}+
(4^{3})^{2n+1}\\
&\equiv 27^{2n+1}+64^{2n+1}\\
&\equiv 27^{2n+1}+
(-27)^{2n+1}\\
&\equiv 27^{2n+1}-27^{2n+1}\\
&\equiv 0{\pmod {91}}\\
\end{align}$
\begin{alignedat}{3}
f(x)&=(m-n)^{2}\\
f(x)&=(-m+n)^{2}\\
&=m^{2}-2mn+n^{2}\\
\end{alignedat}
$\displaystyle \begin{alignedat}{3}
f(x)&=(m-n)^{2}\\
f(x)&=(-m+n)^{2}\\
&=m^{2}-2mn+n^{2}\\
\end{alignedat}$
多行等式(左对齐) \begin{array}{lcl}
z &=&a\\
f(x,y,z)&=&x+y+z
\end{array}
$\displaystyle \begin{array}{lcl}
z &=&a\\
f(x,y,z)&=&x+y+z
\end{array}$
多行等式(右对齐) \begin{array}{lcr}
z &=&a\\
f(x,y,z)&=&x+y+z
\end{array}
$\displaystyle \begin{array}{lcr}
z &=&a\\
f(x,y,z)&=&x+y+z
\end{array}$
长公式换行 <math>f(x) \,!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>
$\displaystyle f(x) \,
= \sum_{n=0}^\infty a_n x^n \\
= a_0+a_1x+a_2x^2+\cdots$
方程组 \begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
$\displaystyle \begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}$
数组 \begin{array}{| c | c | | c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
$\begin{array}{| c | c | | c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}$

字体

希腊字母
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta ${\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }$
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi ${\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \mathrm {O} \Xi \Pi }$
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega ${\displaystyle \mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }$
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta ${\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta }$
\iota \kappa \lambda \mu \nu \omicron \xi \pi ${\displaystyle \iota \kappa \lambda \mu \nu \mathrm {o} \xi \pi }$
\rho \sigma \tau \upsilon \phi \chi \psi \omega ${\displaystyle \rho \sigma \tau \upsilon \phi \chi \psi \omega }$
\varepsilon \digamma \varkappa \varpi ${\displaystyle \varepsilon \digamma \varkappa \varpi }$
\varrho \varsigma \vartheta \varphi ${\displaystyle \varrho \varsigma \vartheta \varphi }$
希伯来符号
\aleph \beth \gimel \daleth ${\displaystyle \aleph \beth \gimel \daleth }$
黑板报粗体
\mathbb{ABCDEFGHI} ${\displaystyle \mathbb {ABCDEFGHI} }$
\mathbb{JKLMNOPQR} ${\displaystyle \mathbb {JKLMNOPQR} }$
\mathbb{STUVWXYZ} ${\displaystyle \mathbb {STUVWXYZ} }$
粗体
\mathbf{ABCDEFGHI} ${\displaystyle \mathbf {ABCDEFGHI} }$
\mathbf{JKLMNOPQR} ${\displaystyle \mathbf {JKLMNOPQR} }$
\mathbf{STUVWXYZ} ${\displaystyle \mathbf {STUVWXYZ} }$
\mathbf{abcdefghijklm} ${\displaystyle \mathbf {abcdefghijklm} }$
\mathbf{nopqrstuvwxyz} ${\displaystyle \mathbf {nopqrstuvwxyz} }$
\mathbf{0123456789} ${\displaystyle \mathbf {0123456789} }$
粗体希腊字母
\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} ${\displaystyle {\boldsymbol {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}$
\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} ${\displaystyle {\boldsymbol {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}$
\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} ${\displaystyle {\boldsymbol {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}$
\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} ${\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta }}}$
\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} ${\displaystyle {\boldsymbol {\iota \kappa \lambda \mu \nu \xi \pi \rho }}}$
\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} ${\displaystyle {\boldsymbol {\sigma \tau \upsilon \phi \chi \psi \omega }}}$
\boldsymbol{\varepsilon\digamma\varkappa\varpi} ${\displaystyle {\boldsymbol {\varepsilon \digamma \varkappa \varpi }}}$
\boldsymbol{\varrho\varsigma\vartheta\varphi} ${\displaystyle {\boldsymbol {\varrho \varsigma \vartheta \varphi }}}$
斜体(拉丁字母默认)
\mathit{0123456789} ${\displaystyle {\mathit {0123456789}}}$
斜体希腊字母(小写字母默认)
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} ${\displaystyle {\mathit {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}$
\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} ${\displaystyle {\mathit {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}$
\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} ${\displaystyle {\mathit {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}$
罗马体
\mathrm{ABCDEFGHI} ${\displaystyle \mathrm {ABCDEFGHI} }$
\mathrm{JKLMNOPQR} ${\displaystyle \mathrm {JKLMNOPQR} }$
\mathrm{STUVWXYZ} ${\displaystyle \mathrm {STUVWXYZ} }$
\mathrm{abcdefghijklm} ${\displaystyle \mathrm {abcdefghijklm} }$
\mathrm{nopqrstuvwxyz} ${\displaystyle \mathrm {nopqrstuvwxyz} }$
\mathrm{0123456789} ${\displaystyle \mathrm {0123456789} }$
无衬线体
\mathsf{ABCDEFGHI} ${\displaystyle {\mathsf {ABCDEFGHI}}}$
\mathsf{JKLMNOPQR} ${\displaystyle {\mathsf {JKLMNOPQR}}}$
\mathsf{STUVWXYZ} ${\displaystyle {\mathsf {STUVWXYZ}}}$
\mathsf{abcdefghijklm} ${\displaystyle {\mathsf {abcdefghijklm}}}$
\mathsf{nopqrstuvwxyz} ${\displaystyle {\mathsf {nopqrstuvwxyz}}}$
\mathsf{0123456789} ${\displaystyle {\mathsf {0123456789}}}$
无衬线体希腊字母(仅大写)
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} ${\displaystyle {\mathsf {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}$
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} ${\displaystyle {\mathsf {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}$
\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} ${\displaystyle {\mathsf {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}$
手写体/花体
\mathcal{ABCDEFGHI} ${\displaystyle {\mathcal {ABCDEFGHI}}}$
\mathcal{JKLMNOPQR} ${\displaystyle {\mathcal {JKLMNOPQR}}}$
\mathcal{STUVWXYZ} ${\displaystyle {\mathcal {STUVWXYZ}}}$
Fraktur体
\mathfrak{ABCDEFGHI} ${\displaystyle {\mathfrak {ABCDEFGHI}}}$
\mathfrak{JKLMNOPQR} ${\displaystyle {\mathfrak {JKLMNOPQR}}}$
\mathfrak{STUVWXYZ} ${\displaystyle {\mathfrak {STUVWXYZ}}}$
\mathfrak{abcdefghijklm} ${\displaystyle {\mathfrak {abcdefghijklm}}}$
\mathfrak{nopqrstuvwxyz} ${\displaystyle {\mathfrak {nopqrstuvwxyz}}}$
\mathfrak{0123456789} ${\displaystyle {\mathfrak {0123456789}}}$
小型手写体
{\scriptstyle\text{abcdefghijklm}} ${\displaystyle {\scriptstyle {\text{abcdefghijklm}}}}$

混合字体

特征 语法 $渲染效果$
斜体字符(忽略空格) x y z ${\displaystyle xyz}$
非斜体字符 \text{x y z} ${\displaystyle {\text{x y z}}}$
混合斜体(差) \text{if} n \text{is even} ${\displaystyle {\text{if}}n{\text{is even}}}$
混合斜体(好) \text{if }n\text{ is even} ${\displaystyle {\text{if }}n{\text{ is even}}}$
混合斜体( 替代品:~ 或者”\ “强制空格) \text{if}~n\ \text{is even} ${\displaystyle {\text{if}}~n\ {\text{is even}}}$

括号

功能 语法 显示
短括号 ( \frac{1}{2} ) ${\displaystyle ({\frac {1}{2}})}$
长括号 \left( \frac{1}{2} \right) ${\displaystyle \left({\frac {1}{2}}\right)}$

可以使用 \left\right 来显示不同的括号:

功能 语法 显示
圆括号,小括号 \left( \frac{a}{b} \right) \left( \frac{a}{b} \right)
方括号,中括号 \left[ \frac{a}{b} \right] \left[ \frac{a}{b} \right]
花括号,大括号 \left{ \frac{a}{b} \right} \left\{ \frac{a}{b} \right\}
角括号 \left \langle \frac{a}{b} \right \rangle \left\langle \frac{a}{b} \right \rangle
单竖线,绝对值 \left| \frac{a}{b} \right|
双竖线,范 \left | \frac{a}{b} \right |
取整函数 \left \lfloor \frac{a}{b} \right \rfloor \left \lfloor \frac{a}{b} \right \rfloor
取顶函数 \left \lceil \frac{c}{d} \right \rceil \left \lceil \frac{c}{d} \right \rceil
斜线与反斜线 \left / \frac{a}{b} \right \backslash \left / \frac{a}{b} \right \backslash
上下箭头 \left \uparrow \frac{a}{b} \right \downarrow {\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow }
\left \Uparrow \frac{a}{b} \right \Downarrow {\displaystyle \left\Uparrow {\frac {a}{b}}\right\Downarrow }
\left \updownarrow \frac{a}{b} \right \Updownarrow {\displaystyle \left\updownarrow {\frac {a}{b}}\right\Updownarrow }
混合括号 \left [ 0,1 \right ) \left \langle \psi \right |
单左括号 \left { \frac{a}{b} \right .
单右括号 \left . \frac{a}{b} \right }

备注:

  • 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,比如代码

\Bigg ( \bigg [ \Big { \big \langle \left | | \frac{a}{b} | \right | \big \rangle \Big } \bigg ] \Bigg )

 显示︰

{\displaystyle {\Bigg (}{\bigg [}{\Big \{}{\big \langle }\left|\|{\frac {a}{b}}\|\right|{\big \rangle }{\Big \}}{\bigg ]}{\Bigg )}}

空格

TEX能够自动处理大多数的空格,但是有时候需要自己来控制。

功能 语法 显示 宽度
2个quad空格 \alpha\qquad\beta \alpha\qquad\beta 2m\
quad空格 \alpha\quad\beta \alpha\quad\beta m\
大空格 \alpha\ \beta \alpha\ \beta \frac{m}{3}
中等空格 \alpha\;\beta \alpha\;\beta \frac{2m}{7}
小空格 \alpha\,\beta \alpha\,\beta \frac{m}{6}
没有空格 \alpha\beta \alpha\beta\ 0\
紧贴 \alpha\!\beta \alpha\!\beta -\frac{m}{6}

颜色

语法

  • 字体颜色︰{\color{色调}表达式}
  • 背景颜色︰{\pagecolor{色调}表达式}[c]~ 这个命令已经失效

支持色调表

\color{Apricot}\text{Apricot} \color{Aquamarine}\text{Aquamarine} \color{Bittersweet}\text{Bittersweet} \color{Black}\text{Black}
\color{Blue}\text{Blue} \color{BlueGreen}\text{BlueGreen} \color{BlueViolet}\text{BlueViolet} \color{BrickRed}\text{BrickRed}
\color{Brown}\text{Brown} \color{BurntOrange}\text{BurntOrange} \color{CadetBlue}\text{CadetBlue} \color{CarnationPink}\text{CarnationPink}
\color{Cerulean}\text{Cerulean} \color{CornflowerBlue}\text{CornflowerBlue} \color{Cyan}\text{Cyan} \color{Dandelion}\text{Dandelion}
\color{DarkOrchid}\text{DarkOrchid} \color{Emerald}\text{Emerald} \color{ForestGreen}\text{ForestGreen} \color{Fuchsia}\text{Fuchsia}
\color{Goldenrod}\text{Goldenrod} \color{Gray}\text{Gray} \color{Green}\text{Green} {\displaystyle \color {GreenYellow}{\text{GreenYellow}}}
\color{JungleGreen}\text{JungleGreen} \color{Lavender}\text{Lavender} \color{LimeGreen}\text{LimeGreen} \color{Magenta}\text{Magenta}
\color{Mahogany}\text{Mahogany} \color{Maroon}\text{Maroon} \color{Melon}\text{Melon} \color{MidnightBlue}\text{MidnightBlue}
\color{Mulberry}\text{Mulberry} \color{NavyBlue}\text{NavyBlue} \color{OliveGreen}\text{OliveGreen} \color{Orange}\text{Orange}
\color{OrangeRed}\text{OrangeRed} \color{Orchid}\text{Orchid} \color{Peach}\text{Peach} \color{Periwinkle}\text{Periwinkle}
\color{PineGreen}\text{PineGreen} \color{Plum}\text{Plum} \color{ProcessBlue}\text{ProcessBlue} \color{Purple}\text{Purple}
\color{RawSienna}\text{RawSienna} \color{Red}\text{Red} \color{RedOrange}\text{RedOrange} \color{RedViolet}\text{RedViolet}
\color{Rhodamine}\text{Rhodamine} \color{RoyalBlue}\text{RoyalBlue} \color{RoyalPurple}\text{RoyalPurple} \color{RubineRed}\text{RubineRed}
\color{Salmon}\text{Salmon} \color{SeaGreen}\text{SeaGreen} \color{Sepia}\text{Sepia} \color{SkyBlue}\text{SkyBlue}
{\displaystyle \color {SpringGreen}{\text{SpringGreen}}} \color{Tan}\text{Tan} \color{TealBlue}\text{TealBlue} \color{Thistle}\text{Thistle}
\color{Turquoise}\text{Turquoise} \color{Violet}\text{Violet} \color{VioletRed}\text{VioletRed} ${\displaystyle \color {White}{\text{White}}}$
\color{WildStrawberry}\text{WildStrawberry} {\displaystyle \color {Yellow}{\text{Yellow}}} \color{YellowGreen}\text{YellowGreen} \color{YellowOrange}\text{YellowOrange}

*注︰输入时第一个字母必需以大写输入,如\color{OliveGreen}

例子

小型数学公式

10 的 $\displaystyle f(x)=5+{\frac {1}{5}}$ 是 2。

  • 🙁并不好看。

10 的 $\displaystyle {\begin{smallmatrix}f(x)=5+{\frac {1}{5}}\end{smallmatrix}}$ 是 2。

  • 😁好看些了。

可以使用

1
\begin{smallmatrix}...\end{smallmatrix}

或直接使用模板。

1
{{Smallmath|f=  f(x)=5+\frac{1}{5} }}

算符名称

\text 命令

积分与求和

插入表格

如果需要插入复杂表格(批量导入网页上的表格)

markdown 插入表格不支持合并单元格

当需要导入的表格太大时markdown手动输入工作量大不太友好,而利用 html 或者 excel 复制表格后粘贴至markdown 编辑器可以省去繁杂的编辑。这里做了一个实例来演示这个方法 —>markdown 插入复杂表格

交换图

使用数学字体

参考文献

0%